Effects of glutathione on antioxidant response element-mediated gene expression and apoptosis elicited by sulforaphane.
نویسندگان
چکیده
Sulforaphane (SFN) and its N-acetyl-L-cysteine (NAC) conjugate are effective inhibitors of tumorigenesis in animal models. These compounds induce the expression of the antioxidant response element (ARE)-related genes and cause apoptosis. We studied the role of reduced glutathione (GSH) in the activations of ARE-mediated gene expression, apoptosis, and the activation of c-Jun NH(2)-terminal kinase (JNK) in HepG2-C8 cells. The cellular level of GSH decreased transiently when cells were exposed to SFN and then increased from 4 h, reaching 2.2-fold over control at 24 h. In contrast, SFN-NAC did not change the GSH level substantially during the time of incubation. ARE expression was increased in a dose-dependent manner up to 35 micro M SFN and 75 micro M SFN-NAC, respectively. The induction of ARE by SFN was 8.6-fold higher than that by SFN-NAC. Pretreatment with L-buthionine sulfoximine increased SFN-induced ARE expression significantly. The decrease in ARE expression at higher concentrations of SFN and SFN-NAC was correlated with accelerated apoptotic cell death, with a dose-dependent activation of caspase 3 activity by SFN. On addition of extracellular GSH within 6 h of treatment with SFN, the effect on ARE expression was blocked almost completely. SFN was able to activate JNK1/2, and that activation was blocked by treatment with exogenous GSH. Taken together, these results suggest that the biological effects of SFN and SFN-NAC on the induction of ARE-related gene expression and apoptosis could be different from each other; however, the different effects on ARE-related gene expression and apoptosis elicited by SFN can be blocked by the addition of GSH.
منابع مشابه
Activating the Nrf2-mediated antioxidant response element restores barrier function in the alveolar epithelium of HIV-1 transgenic rats.
The master transcription factor nuclear factor (erythroid-derived 2)-like 2 (Nrf2) regulates the expression of antioxidant and phase II-metabolizing enzymes by activating the antioxidant response element (ARE) and thereby protects cells and tissues from oxidative stress. Pulmonary complications remain the leading cause of death in human immunodeficiency virus (HIV)-1-infected individuals, who d...
متن کاملExpression of MRP1 and GSTP1-1 modulate the acute cellular response to treatment with the chemopreventive isothiocyanate, sulforaphane.
A major component of the anticarcinogenic activity of the dietary chemopreventive agent sulforaphane (SFN) is attributed to its ability to induce expression of phase II detoxification genes containing the antioxidant response element (ARE) within their promoters. Because SFN is a reactive electrophile--readily forming conjugates with glutathione (GSH)--we asked whether expression of glutathione...
متن کاملExpression of the aflatoxin B1-8,9-epoxide-metabolizing murine glutathione S-transferase A3 subunit is regulated by the Nrf2 transcription factor through an antioxidant response element.
High expression of the aflatoxin B1 (AFB1)-8,9-epoxide-conjugating glutathione S-transferase A3 (mGSTA3) subunit in mouse liver confers intrinsic resistance to AFB1 hepatocarcinogenesis. It is not known how the gene encoding this protein is regulated. The murine mGSTA3 gene has been identified using bioinformatics. It localizes to mouse chromosome 1 (A3-4), spans approximately 24.6 kilobases (k...
متن کاملActivation of NF-E2–Related Factor-2 Reverses Biochemical Dysfunction of Endothelial Cells Induced by Hyperglycemia Linked to Vascular Disease
OBJECTIVE Sulforaphane is an activator of transcription factor NF-E2-related factor-2 (nrf2) that regulates gene expression through the promoter antioxidant response element (ARE). Nrf2 regulates the transcription of a battery of protective and metabolic enzymes. The aim of this study was to assess whether activation of nrf2 by sulforaphane in human microvascular endothelial cells prevents meta...
متن کاملSulforaphane inhibits multiple inflammasomes through an Nrf2-independent mechanism.
The inflammasomes are intracellular complexes that have an important role in cytosolic innate immune sensing and pathogen defense. Inflammasome sensors detect a diversity of intracellular microbial ligands and endogenous danger signals and activate caspase-1, thus initiating maturation and release of the proinflammatory cytokines interleukin-1β and interleukin-18. These events, although crucial...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Cancer research
دوره 63 21 شماره
صفحات -
تاریخ انتشار 2003